Biodiversity accounting for Oslo: Quantifying plant and ecosystem diversity

Olav Skarpaas

ViO and NINA URBAN EEA symposium 17.09.2018

Overview

- 1) Measurements
 - Existing biodiversity data: (in)completeness, bias
 - URBAN EEA: stratified field surveys
- 2) Modeling
 - Current condition of species and ecosystems
 - Predictions for other conditions (past, future)
- 3) Accounts
 - Measured state & change
 - Modeled state & change

Existing ecosystem data: incomplete coverage

Selected ecosystems and habitats ('utvalgte naturtyper')

Norwegian Environment Agency, Naturbase: http://kart.naturbase.no/

Existing species data: sampling bias

Species of interest to management ('arter av stor forvaltningsinteresse')

Norwegian Environment Agency, Naturbase: http://kart.naturbase.no/

Existing species data: sampling bias

Estimated visits per year 2015-2017

• Observations:

20 000 plant occurrence records 2015-2017 (a selection of the data available at GBIF: www.gbif.org)

• Sampling effort:

Number of unique visits (based on records of all plants)

New species and ecosystem surveys: Stratified sampling

Pilot plot, 10x10m 70 plant species

NINA

1 Mis

Preliminary mapping results (2017) Observed ecosystem coverage

- Ecosystems mapped with NiN system ('natursystemer') by NMBU students
- Three blocks along urban-rural gradient
- Illustration from
 Skøyen: similar maps at Sandvika and Ås

Preliminary mapping results (2017)

Observed ecosystem diversity

Modelling plant species richness: Approach for survey data

 Balanced systematic sample -> model species individually

- Logistic regression (binomial GLM), with backward model selection based on AIC
- Predicted richness = summed model predictions (probabilities) across single-species models

Environmental predictors (first round)

elevation

TPI

limestone

substrate

temp surface

Preliminary results survey data 2017 Estimated species richness

• All species, N = 430

Preliminary results survey data 2017 Estimated species richness

Modelling plant occurrence: Approach for GBIF data

- Few/imbalanced records per species -> model species ensemble (here: calcareous grassland specialists)
- Poisson regression (GLM) with sampling effort as offset, random species intercepts, and backward model selection based on AIC
- Model output: predicted probability of occurrence

Preliminary results GBIF data Multi-species model

Preliminary results GBIF data Multi-species models

Poisson regression model for calcareous grassland specialists

Fixed effects:

	Estimate	Pr(> z)	
(Intercept)	-7.87352	< 2e-16	* * *
geo_soil	-0.29142	0.0433	*
geo_calcareous_rocł	3.75e-13	* * *	
slope	-0.02469	0.6494	
slope^2	0.07305	5.86e-06	* * *
curvature	0.04360	0.0103	*
landcover_built_up	0.06256	0.8890	
landcover_trees	0.22514	0.6207	
landcover_grass	0.45866	0.3241	
landcover_water_edg	9 0.56396	0.2604	
building_densityAW	-0.83891	< 2e-16	* * *
road_distance	0.39554	2.53e-05	* * *
road_distance^2	-0.05463	0.0234	*

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Model predictions for for land use scenarios

No buildings or roads, mostly forest, except on exposed bedrock

Building density increased everywhere with current mean density

Towards accounts *Measured* state & change

Native species richne

State

- 2017 surveys
- 2018 extended surveys
 (4 MS: Halvorsen, Karlsen, Karijord and Lynne)
- Change

2017 surveys repeated in 2018

- species (MS Halvorsen)
- ecosystems (NMBU students)
- Pros & cons
 - Pros: reliable, unbiased
 - Cons: costly, low coverage, rare species/ecosystems unobserved
- Suitable for (relatively) common species/ecosystems

Towards accounts *Modeled* state & change

• State

- modeled conditions based on surveys and other data (e.g. GBIF)
- Change
 - differences in model predictions between different times/scenarios
- Pros & cons
 - Pros: full coverage, (ideally) unbiased
 - Cons: many uncertainties, incl. predictor quality and coverage
- Suitable for selected species and ecosystems, incl. some rare

How to feed measurements and model outputs into accounts?

- Measures of ecosystem condition and extent:
 - Species richness?
 - (Mean) probability of occurrence?
 - (Mean) abundance?
 - Area of occupancy?
 - Aggregates (BGF, NI, NiN types)?
 - ES-oriented subsets (indicators)?
 - .
- Accounting unit:
 - Municipality?
 - District (bydel)?
 - Property?
 - ...
- Baselines?

Depends on purpose: which accounts are useful?

Account example 1 Ecosystem extent: NiN types

Percent of area covered by ecosystem types, in urban, suburban and rural areas.

	Major		2017			2018				
Ecosystem class	type	Description	Urban	Suburban	Rural	Overall	Urban	Suburban	Rural	Overall
Strongly modified	T43	Lawns, parks, etc.	51,4	63,4	3,0	39,3				
Strongly modified	T45	Agricultural field	0,0	0,0	67,7	22,6				
Strongly modified	Т37	Asphalt, etc.	27,8	15,7	0,0	14,5				
Strongly modified	T35	Gravel, etc.	3,0	6,1	0,9	3,3				
Strongly modified	T42	Flowerbeds, etc.	7,0	0,0	2,2	3,1				
Strongly modified	Т39	Concrete, boulders, etc.	3,0	0,0	0,0	1,0				
Strongly modified	T40	Road verges, etc.	0,7	0,5	0,1	0,5				
Semi-natural	Т32	Semi-natural meadow	0,0	0,0	1,0	0,3				
Natural	Т4	Forest	6,0	13,1	24,1	14,4				
Natural	Т30	Flooded forest	1,1	1,1	0,0	0,7				
Natural	Т2	Naturally open grassland	0,0	0,0	0,6	0,2				
Natural	Т29	Gravel beach	0,0	0,0	0,3	0,1				
Sum			100,0	100,0	100,0	100,0				

Based on one subjectively placed block in each urban/subarban/rural stratum at Skøyen 2017. 2018: Revisits (NMBU students) + surveys of 12 tratified random blocks for all of Oslo are almost complete (Karlsen, Halvorsen, MS theses in prep.).

Account example 2 Ecosystem condition: calcareous species

Current modelled state, per property

Relative loss/gain compared to estimated natural state, per property

blue: low, red: high

blue: negative, red: positive

Based on preliminary model of probability of occurrence of calcareous specialist plants (Skarpaas et al. in prep.) and cadastre (Kartverket, geonorge.no).

Questions?

UiO *** Natural History Museum** University of Oslo

Many thanks to Anders Often, Egil Bendiksen, Harald Bratli, Megan Nowell, David Barton, Anne-B. Nilsen, the 2017 classes of BOT270 at NMBU and BIO4115/9115 at UiO, and the URBAN-EEA consortium.